Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height =
[2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area =
10
unit.
For example,
Given height =
return
Given height =
[2,1,5,6,2,3]
,return
10
.[解题思路]
对于每一个height,遍历前面所有的height,求取面积最大值。时间复杂度是O(n*n)
1: int largestRectangleArea(vector<int> &height) {
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: //int result[height.size()];
5: int maxV = 0;
6: for(int i =0; i< height.size(); i++)
7: {
8: int minV = height[i];
9: for(int j =i; j>=0; j--)
10: {
11: minV = std::min(minV, height[j]);
12: int area = minV*(i-j+1);
13: if(area > maxV)
14: maxV = area;
15: }
16: }
17: return maxV;
18: }
可以过小数据,但是大数据超时。可以理解,这个解法包含了很多重复计算。一个简单的改进,是只对合适的右边界(峰顶),往左遍历面积。 1: int largestRectangleArea(vector<int> &height) {
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: int maxV = 0;
5: int start = 0;
6: int end = height.size();
7: while(start< height.size())
8: {
9: end = height.size() -1;
10: for(int k = start+1;k <= end; k++)
11: {
12: if(height[k] < height[k-1])
13: {
14: end = k-1;
15: break;
16: }
17: }
18: int minV = height[end];
19: for(int j =end; j>=0; j--)
20: {
21: minV = std::min(minV, height[j]);
22: int area = minV*(end-j+1);
23: if(area > maxV)
24: maxV = area;
25: }
26: start = end +1;
27: }
28: return maxV;
29: }
这样的话,就可以通过大数据。但是这个优化只是比较有效的剪枝,算法仍然是O(n*n).
O(n)的解法 如下图所示,从左到右处理直方,i=4时,小于当前栈顶(及直方3),于是在统计完区间[2,3]的最大值以后,消除掉阴影部分,然后把红线部分作为一个大直方插入。因为,无论后面还是前面的直方,都不可能得到比目前栈顶元素更高的高度了。
这就意味着,可以维护一个递增的栈,每次比较栈顶与当前元素。如果当前元素小于栈顶元素,则入站,否则合并现有栈,直至栈顶元素小于当前元素。结尾入站元素0,重复合并一次。
思路很巧妙,代码如下, 大数据 76ms过。
1: int largestRectangleArea(vector<int> &height) {
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: int stack[height.size()+1], width[height.size()+1];
5: if(height.size() == 0) return 0;
6: int top = 0, area = INT_MIN;
7: stack[0] = 0;
8: width[0] = 0;
9: int newHeight;
10: for(int i =0; i<= height.size(); i++)
11: {
12: if(i < height.size()) newHeight = height[i];
13: else newHeight = -1;
14: if(newHeight>= stack[top])
15: {
16: stack[++top] = newHeight;
17: width[top] = 1;
18: }
19: else
20: {
21: int minV = INT_MAX;
22: int wid= 0;
23: while(stack[top] > newHeight)
24: {
25: minV = min(minV, stack[top]);
26: wid += width[top];
27: area = max(area, minV*(wid));
28: top--;
29: }
30: stack[++top] = newHeight;
31: width[top] = wid+1;
32: }
33: }
34: return area;
35: }
引入stack后的解法可以优化成如下:
1: int largestRectangleArea(vector<int> &h) {
2: stack<int> S;
3: h.push_back(0);
4: int sum = 0;
5: for (int i = 0; i < h.size(); i++) {
6: if (S.empty() || h[i] > h[S.top()]) S.push(i);
7: else {
8: int tmp = S.top();
9: S.pop();
10: sum = max(sum, h[tmp]*(S.empty()? i : i-S.top()-1));
11: i--;
12: }
13: }
14: return sum;
15: }
[总结]
这道题的解法引入的stack非常巧妙,利用了space减少重复计算的问题。space O(n), time O(n)
No comments :
Post a Comment